(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(X1, X2)
activate(n__from(X)) → from(X)
activate(n__add(X1, X2)) → add(X1, X2)
activate(n__len(X)) → len(X)
activate(X) → X

Rewrite Strategy: INNERMOST

(1) TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID) transformation)

Transformed TRS to weighted TRS

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

fst(0, Z) → nil [1]
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z))) [1]
from(X) → cons(X, n__from(s(X))) [1]
add(0, X) → X [1]
add(s(X), Y) → s(n__add(activate(X), Y)) [1]
len(nil) → 0 [1]
len(cons(X, Z)) → s(n__len(activate(Z))) [1]
fst(X1, X2) → n__fst(X1, X2) [1]
from(X) → n__from(X) [1]
add(X1, X2) → n__add(X1, X2) [1]
len(X) → n__len(X) [1]
activate(n__fst(X1, X2)) → fst(X1, X2) [1]
activate(n__from(X)) → from(X) [1]
activate(n__add(X1, X2)) → add(X1, X2) [1]
activate(n__len(X)) → len(X) [1]
activate(X) → X [1]

Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

fst(0, Z) → nil [1]
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z))) [1]
from(X) → cons(X, n__from(s(X))) [1]
add(0, X) → X [1]
add(s(X), Y) → s(n__add(activate(X), Y)) [1]
len(nil) → 0 [1]
len(cons(X, Z)) → s(n__len(activate(Z))) [1]
fst(X1, X2) → n__fst(X1, X2) [1]
from(X) → n__from(X) [1]
add(X1, X2) → n__add(X1, X2) [1]
len(X) → n__len(X) [1]
activate(n__fst(X1, X2)) → fst(X1, X2) [1]
activate(n__from(X)) → from(X) [1]
activate(n__add(X1, X2)) → add(X1, X2) [1]
activate(n__len(X)) → len(X) [1]
activate(X) → X [1]

The TRS has the following type information:
fst :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
0 :: 0:nil:s:cons:n__fst:n__from:n__add:n__len
nil :: 0:nil:s:cons:n__fst:n__from:n__add:n__len
s :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
cons :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
n__fst :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
activate :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
from :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
n__from :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
add :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
n__add :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
len :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
n__len :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len

Rewrite Strategy: INNERMOST

(5) CompletionProof (UPPER BOUND(ID) transformation)

The transformation into a RNTS is sound, since:

(a) The obligation is a constructor system where every type has a constant constructor,

(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:


fst
from
add
len
activate

(c) The following functions are completely defined:
none

Due to the following rules being added:
none

And the following fresh constants: none

(6) Obligation:

Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

fst(0, Z) → nil [1]
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z))) [1]
from(X) → cons(X, n__from(s(X))) [1]
add(0, X) → X [1]
add(s(X), Y) → s(n__add(activate(X), Y)) [1]
len(nil) → 0 [1]
len(cons(X, Z)) → s(n__len(activate(Z))) [1]
fst(X1, X2) → n__fst(X1, X2) [1]
from(X) → n__from(X) [1]
add(X1, X2) → n__add(X1, X2) [1]
len(X) → n__len(X) [1]
activate(n__fst(X1, X2)) → fst(X1, X2) [1]
activate(n__from(X)) → from(X) [1]
activate(n__add(X1, X2)) → add(X1, X2) [1]
activate(n__len(X)) → len(X) [1]
activate(X) → X [1]

The TRS has the following type information:
fst :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
0 :: 0:nil:s:cons:n__fst:n__from:n__add:n__len
nil :: 0:nil:s:cons:n__fst:n__from:n__add:n__len
s :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
cons :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
n__fst :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
activate :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
from :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
n__from :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
add :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
n__add :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
len :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
n__len :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len

Rewrite Strategy: INNERMOST

(7) NarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Narrowed the inner basic terms of all right-hand sides by a single narrowing step.

(8) Obligation:

Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

fst(0, Z) → nil [1]
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z))) [1]
from(X) → cons(X, n__from(s(X))) [1]
add(0, X) → X [1]
add(s(X), Y) → s(n__add(activate(X), Y)) [1]
len(nil) → 0 [1]
len(cons(X, Z)) → s(n__len(activate(Z))) [1]
fst(X1, X2) → n__fst(X1, X2) [1]
from(X) → n__from(X) [1]
add(X1, X2) → n__add(X1, X2) [1]
len(X) → n__len(X) [1]
activate(n__fst(X1, X2)) → fst(X1, X2) [1]
activate(n__from(X)) → from(X) [1]
activate(n__add(X1, X2)) → add(X1, X2) [1]
activate(n__len(X)) → len(X) [1]
activate(X) → X [1]

The TRS has the following type information:
fst :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
0 :: 0:nil:s:cons:n__fst:n__from:n__add:n__len
nil :: 0:nil:s:cons:n__fst:n__from:n__add:n__len
s :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
cons :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
n__fst :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
activate :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
from :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
n__from :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
add :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
n__add :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
len :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len
n__len :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len

Rewrite Strategy: INNERMOST

(9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID) transformation)

Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction.
The constant constructors are abstracted as follows:

0 => 0
nil => 1

(10) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ X :|: X >= 0, z = X
activate(z) -{ 1 }→ len(X) :|: z = 1 + X, X >= 0
activate(z) -{ 1 }→ fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ from(X) :|: z = 1 + X, X >= 0
activate(z) -{ 1 }→ add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
add(z, z') -{ 1 }→ X :|: z' = X, X >= 0, z = 0
add(z, z') -{ 1 }→ 1 + (1 + activate(X) + Y) :|: z = 1 + X, z' = Y, Y >= 0, X >= 0
add(z, z') -{ 1 }→ 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2
from(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
from(z) -{ 1 }→ 1 + X + (1 + (1 + X)) :|: X >= 0, z = X
fst(z, z') -{ 1 }→ 1 :|: Z >= 0, z' = Z, z = 0
fst(z, z') -{ 1 }→ 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2
fst(z, z') -{ 1 }→ 1 + Y + (1 + activate(X) + activate(Z)) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z
len(z) -{ 1 }→ 0 :|: z = 1
len(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
len(z) -{ 1 }→ 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z

(11) InliningProof (UPPER BOUND(ID) transformation)

Inlined the following terminating rules on right-hand sides where appropriate:

from(z) -{ 1 }→ 1 + X + (1 + (1 + X)) :|: X >= 0, z = X
from(z) -{ 1 }→ 1 + X :|: X >= 0, z = X

(12) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ X :|: X >= 0, z = X
activate(z) -{ 1 }→ len(X) :|: z = 1 + X, X >= 0
activate(z) -{ 1 }→ fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z = 1 + X, X >= 0, X' >= 0, X = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z = 1 + X, X >= 0, X' >= 0, X = X'
add(z, z') -{ 1 }→ X :|: z' = X, X >= 0, z = 0
add(z, z') -{ 1 }→ 1 + (1 + activate(X) + Y) :|: z = 1 + X, z' = Y, Y >= 0, X >= 0
add(z, z') -{ 1 }→ 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2
from(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
from(z) -{ 1 }→ 1 + X + (1 + (1 + X)) :|: X >= 0, z = X
fst(z, z') -{ 1 }→ 1 :|: Z >= 0, z' = Z, z = 0
fst(z, z') -{ 1 }→ 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2
fst(z, z') -{ 1 }→ 1 + Y + (1 + activate(X) + activate(Z)) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z
len(z) -{ 1 }→ 0 :|: z = 1
len(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
len(z) -{ 1 }→ 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z

(13) SimplificationProof (BOTH BOUNDS(ID, ID) transformation)

Simplified the RNTS by moving equalities from the constraints into the right-hand sides.

(14) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ len(z - 1) :|: z - 1 >= 0
activate(z) -{ 1 }→ fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
add(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
add(z, z') -{ 1 }→ 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0
add(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
fst(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
fst(z, z') -{ 1 }→ 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
fst(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
len(z) -{ 1 }→ 0 :|: z = 1
len(z) -{ 1 }→ 1 + z :|: z >= 0
len(z) -{ 1 }→ 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z

(15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID) transformation)

Found the following analysis order by SCC decomposition:

{ from }
{ fst, add, activate, len }

(16) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ len(z - 1) :|: z - 1 >= 0
activate(z) -{ 1 }→ fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
add(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
add(z, z') -{ 1 }→ 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0
add(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
fst(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
fst(z, z') -{ 1 }→ 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
fst(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
len(z) -{ 1 }→ 0 :|: z = 1
len(z) -{ 1 }→ 1 + z :|: z >= 0
len(z) -{ 1 }→ 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z

Function symbols to be analyzed: {from}, {fst,add,activate,len}

(17) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: from
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 3 + 2·z

(18) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ len(z - 1) :|: z - 1 >= 0
activate(z) -{ 1 }→ fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
add(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
add(z, z') -{ 1 }→ 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0
add(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
fst(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
fst(z, z') -{ 1 }→ 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
fst(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
len(z) -{ 1 }→ 0 :|: z = 1
len(z) -{ 1 }→ 1 + z :|: z >= 0
len(z) -{ 1 }→ 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z

Function symbols to be analyzed: {from}, {fst,add,activate,len}
Previous analysis results are:
from: runtime: ?, size: O(n1) [3 + 2·z]

(19) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using CoFloCo for: from
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

(20) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ len(z - 1) :|: z - 1 >= 0
activate(z) -{ 1 }→ fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
add(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
add(z, z') -{ 1 }→ 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0
add(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
fst(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
fst(z, z') -{ 1 }→ 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
fst(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
len(z) -{ 1 }→ 0 :|: z = 1
len(z) -{ 1 }→ 1 + z :|: z >= 0
len(z) -{ 1 }→ 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z

Function symbols to be analyzed: {fst,add,activate,len}
Previous analysis results are:
from: runtime: O(1) [1], size: O(n1) [3 + 2·z]

(21) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(22) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ len(z - 1) :|: z - 1 >= 0
activate(z) -{ 1 }→ fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
add(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
add(z, z') -{ 1 }→ 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0
add(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
fst(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
fst(z, z') -{ 1 }→ 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
fst(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
len(z) -{ 1 }→ 0 :|: z = 1
len(z) -{ 1 }→ 1 + z :|: z >= 0
len(z) -{ 1 }→ 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z

Function symbols to be analyzed: {fst,add,activate,len}
Previous analysis results are:
from: runtime: O(1) [1], size: O(n1) [3 + 2·z]

(23) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using KoAT for: fst
after applying outer abstraction to obtain an ITS,
resulting in: O(n2) with polynomial bound: 14 + 26·z + 24·z·z' + 12·z2 + 26·z' + 12·z'2

Computed SIZE bound using KoAT for: add
after applying outer abstraction to obtain an ITS,
resulting in: O(n2) with polynomial bound: 20 + 64·z + z·z' + 49·z2 + 2·z'

Computed SIZE bound using KoAT for: activate
after applying outer abstraction to obtain an ITS,
resulting in: O(n2) with polynomial bound: 39 + 125·z + 98·z2

Computed SIZE bound using KoAT for: len
after applying outer abstraction to obtain an ITS,
resulting in: O(n2) with polynomial bound: 42 + 126·z + 98·z2

(24) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ len(z - 1) :|: z - 1 >= 0
activate(z) -{ 1 }→ fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
add(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
add(z, z') -{ 1 }→ 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0
add(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
fst(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
fst(z, z') -{ 1 }→ 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
fst(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
len(z) -{ 1 }→ 0 :|: z = 1
len(z) -{ 1 }→ 1 + z :|: z >= 0
len(z) -{ 1 }→ 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z

Function symbols to be analyzed: {fst,add,activate,len}
Previous analysis results are:
from: runtime: O(1) [1], size: O(n1) [3 + 2·z]
fst: runtime: ?, size: O(n2) [14 + 26·z + 24·z·z' + 12·z2 + 26·z' + 12·z'2]
add: runtime: ?, size: O(n2) [20 + 64·z + z·z' + 49·z2 + 2·z']
activate: runtime: ?, size: O(n2) [39 + 125·z + 98·z2]
len: runtime: ?, size: O(n2) [42 + 126·z + 98·z2]

(25) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using KoAT for: fst
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 15 + 15·z + 15·z'

Computed RUNTIME bound using KoAT for: add
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 23 + 34·z

Computed RUNTIME bound using KoAT for: activate
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 45 + 66·z

Computed RUNTIME bound using CoFloCo for: len
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 20 + 66·z

(26) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ len(z - 1) :|: z - 1 >= 0
activate(z) -{ 1 }→ fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
add(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
add(z, z') -{ 1 }→ 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0
add(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
fst(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
fst(z, z') -{ 1 }→ 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
fst(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
len(z) -{ 1 }→ 0 :|: z = 1
len(z) -{ 1 }→ 1 + z :|: z >= 0
len(z) -{ 1 }→ 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z

Function symbols to be analyzed:
Previous analysis results are:
from: runtime: O(1) [1], size: O(n1) [3 + 2·z]
fst: runtime: O(n1) [15 + 15·z + 15·z'], size: O(n2) [14 + 26·z + 24·z·z' + 12·z2 + 26·z' + 12·z'2]
add: runtime: O(n1) [23 + 34·z], size: O(n2) [20 + 64·z + z·z' + 49·z2 + 2·z']
activate: runtime: O(n1) [45 + 66·z], size: O(n2) [39 + 125·z + 98·z2]
len: runtime: O(n1) [20 + 66·z], size: O(n2) [42 + 126·z + 98·z2]

(27) FinalProof (EQUIVALENT transformation)

Computed overall runtime complexity

(28) BOUNDS(1, n^1)