0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 InliningProof (UPPER BOUND(ID), 76 ms)
↳12 CpxRNTS
↳13 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 182 ms)
↳18 CpxRNTS
↳19 IntTrsBoundProof (UPPER BOUND(ID), 41 ms)
↳20 CpxRNTS
↳21 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 6221 ms)
↳24 CpxRNTS
↳25 IntTrsBoundProof (UPPER BOUND(ID), 584 ms)
↳26 CpxRNTS
↳27 FinalProof (⇔, 0 ms)
↳28 BOUNDS(1, n^1)
fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(X1, X2)
activate(n__from(X)) → from(X)
activate(n__add(X1, X2)) → add(X1, X2)
activate(n__len(X)) → len(X)
activate(X) → X
fst(0, Z) → nil [1]
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z))) [1]
from(X) → cons(X, n__from(s(X))) [1]
add(0, X) → X [1]
add(s(X), Y) → s(n__add(activate(X), Y)) [1]
len(nil) → 0 [1]
len(cons(X, Z)) → s(n__len(activate(Z))) [1]
fst(X1, X2) → n__fst(X1, X2) [1]
from(X) → n__from(X) [1]
add(X1, X2) → n__add(X1, X2) [1]
len(X) → n__len(X) [1]
activate(n__fst(X1, X2)) → fst(X1, X2) [1]
activate(n__from(X)) → from(X) [1]
activate(n__add(X1, X2)) → add(X1, X2) [1]
activate(n__len(X)) → len(X) [1]
activate(X) → X [1]
fst(0, Z) → nil [1]
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z))) [1]
from(X) → cons(X, n__from(s(X))) [1]
add(0, X) → X [1]
add(s(X), Y) → s(n__add(activate(X), Y)) [1]
len(nil) → 0 [1]
len(cons(X, Z)) → s(n__len(activate(Z))) [1]
fst(X1, X2) → n__fst(X1, X2) [1]
from(X) → n__from(X) [1]
add(X1, X2) → n__add(X1, X2) [1]
len(X) → n__len(X) [1]
activate(n__fst(X1, X2)) → fst(X1, X2) [1]
activate(n__from(X)) → from(X) [1]
activate(n__add(X1, X2)) → add(X1, X2) [1]
activate(n__len(X)) → len(X) [1]
activate(X) → X [1]
fst :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len 0 :: 0:nil:s:cons:n__fst:n__from:n__add:n__len nil :: 0:nil:s:cons:n__fst:n__from:n__add:n__len s :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len cons :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len n__fst :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len activate :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len from :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len n__from :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len add :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len n__add :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len len :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len n__len :: 0:nil:s:cons:n__fst:n__from:n__add:n__len → 0:nil:s:cons:n__fst:n__from:n__add:n__len |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
fst
from
add
len
activate
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
nil => 1
activate(z) -{ 1 }→ X :|: X >= 0, z = X
activate(z) -{ 1 }→ len(X) :|: z = 1 + X, X >= 0
activate(z) -{ 1 }→ fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ from(X) :|: z = 1 + X, X >= 0
activate(z) -{ 1 }→ add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
add(z, z') -{ 1 }→ X :|: z' = X, X >= 0, z = 0
add(z, z') -{ 1 }→ 1 + (1 + activate(X) + Y) :|: z = 1 + X, z' = Y, Y >= 0, X >= 0
add(z, z') -{ 1 }→ 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2
from(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
from(z) -{ 1 }→ 1 + X + (1 + (1 + X)) :|: X >= 0, z = X
fst(z, z') -{ 1 }→ 1 :|: Z >= 0, z' = Z, z = 0
fst(z, z') -{ 1 }→ 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2
fst(z, z') -{ 1 }→ 1 + Y + (1 + activate(X) + activate(Z)) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z
len(z) -{ 1 }→ 0 :|: z = 1
len(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
len(z) -{ 1 }→ 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z
from(z) -{ 1 }→ 1 + X + (1 + (1 + X)) :|: X >= 0, z = X
from(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
activate(z) -{ 1 }→ X :|: X >= 0, z = X
activate(z) -{ 1 }→ len(X) :|: z = 1 + X, X >= 0
activate(z) -{ 1 }→ fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z = 1 + X, X >= 0, X' >= 0, X = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z = 1 + X, X >= 0, X' >= 0, X = X'
add(z, z') -{ 1 }→ X :|: z' = X, X >= 0, z = 0
add(z, z') -{ 1 }→ 1 + (1 + activate(X) + Y) :|: z = 1 + X, z' = Y, Y >= 0, X >= 0
add(z, z') -{ 1 }→ 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2
from(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
from(z) -{ 1 }→ 1 + X + (1 + (1 + X)) :|: X >= 0, z = X
fst(z, z') -{ 1 }→ 1 :|: Z >= 0, z' = Z, z = 0
fst(z, z') -{ 1 }→ 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2
fst(z, z') -{ 1 }→ 1 + Y + (1 + activate(X) + activate(Z)) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z
len(z) -{ 1 }→ 0 :|: z = 1
len(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
len(z) -{ 1 }→ 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ len(z - 1) :|: z - 1 >= 0
activate(z) -{ 1 }→ fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
add(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
add(z, z') -{ 1 }→ 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0
add(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
fst(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
fst(z, z') -{ 1 }→ 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
fst(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
len(z) -{ 1 }→ 0 :|: z = 1
len(z) -{ 1 }→ 1 + z :|: z >= 0
len(z) -{ 1 }→ 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z
{ from } { fst, add, activate, len } |
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ len(z - 1) :|: z - 1 >= 0
activate(z) -{ 1 }→ fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
add(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
add(z, z') -{ 1 }→ 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0
add(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
fst(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
fst(z, z') -{ 1 }→ 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
fst(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
len(z) -{ 1 }→ 0 :|: z = 1
len(z) -{ 1 }→ 1 + z :|: z >= 0
len(z) -{ 1 }→ 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ len(z - 1) :|: z - 1 >= 0
activate(z) -{ 1 }→ fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
add(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
add(z, z') -{ 1 }→ 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0
add(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
fst(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
fst(z, z') -{ 1 }→ 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
fst(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
len(z) -{ 1 }→ 0 :|: z = 1
len(z) -{ 1 }→ 1 + z :|: z >= 0
len(z) -{ 1 }→ 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z
from: runtime: ?, size: O(n1) [3 + 2·z] |
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ len(z - 1) :|: z - 1 >= 0
activate(z) -{ 1 }→ fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
add(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
add(z, z') -{ 1 }→ 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0
add(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
fst(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
fst(z, z') -{ 1 }→ 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
fst(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
len(z) -{ 1 }→ 0 :|: z = 1
len(z) -{ 1 }→ 1 + z :|: z >= 0
len(z) -{ 1 }→ 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z
from: runtime: O(1) [1], size: O(n1) [3 + 2·z] |
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ len(z - 1) :|: z - 1 >= 0
activate(z) -{ 1 }→ fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
add(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
add(z, z') -{ 1 }→ 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0
add(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
fst(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
fst(z, z') -{ 1 }→ 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
fst(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
len(z) -{ 1 }→ 0 :|: z = 1
len(z) -{ 1 }→ 1 + z :|: z >= 0
len(z) -{ 1 }→ 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z
from: runtime: O(1) [1], size: O(n1) [3 + 2·z] |
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ len(z - 1) :|: z - 1 >= 0
activate(z) -{ 1 }→ fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
add(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
add(z, z') -{ 1 }→ 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0
add(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
fst(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
fst(z, z') -{ 1 }→ 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
fst(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
len(z) -{ 1 }→ 0 :|: z = 1
len(z) -{ 1 }→ 1 + z :|: z >= 0
len(z) -{ 1 }→ 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z
from: runtime: O(1) [1], size: O(n1) [3 + 2·z] fst: runtime: ?, size: O(n2) [14 + 26·z + 24·z·z' + 12·z2 + 26·z' + 12·z'2] add: runtime: ?, size: O(n2) [20 + 64·z + z·z' + 49·z2 + 2·z'] activate: runtime: ?, size: O(n2) [39 + 125·z + 98·z2] len: runtime: ?, size: O(n2) [42 + 126·z + 98·z2] |
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ len(z - 1) :|: z - 1 >= 0
activate(z) -{ 1 }→ fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
add(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
add(z, z') -{ 1 }→ 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0
add(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
fst(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
fst(z, z') -{ 1 }→ 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
fst(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
len(z) -{ 1 }→ 0 :|: z = 1
len(z) -{ 1 }→ 1 + z :|: z >= 0
len(z) -{ 1 }→ 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z
from: runtime: O(1) [1], size: O(n1) [3 + 2·z] fst: runtime: O(n1) [15 + 15·z + 15·z'], size: O(n2) [14 + 26·z + 24·z·z' + 12·z2 + 26·z' + 12·z'2] add: runtime: O(n1) [23 + 34·z], size: O(n2) [20 + 64·z + z·z' + 49·z2 + 2·z'] activate: runtime: O(n1) [45 + 66·z], size: O(n2) [39 + 125·z + 98·z2] len: runtime: O(n1) [20 + 66·z], size: O(n2) [42 + 126·z + 98·z2] |